Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 129: 155633, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38640859

RESUMO

BACKGROUND: Doxorubicin (DOX) is an effective anticancer agent. However, the clinical outcomes of DOX-based therapies are severely hampered by their significant cardiotoxicity. PURPOSE: We investigated the beneficial effects of an ethanol extract of Cirsium setidens (CSE) on DOX-induced cardiomyotoxicity (DICT). METHODS: UPLC-TQ/MS analysis was used to identify CSE metabolite profiles. H9c2 rat cardiomyocytes and MDA-MB-231 human breast cancer cells were used to evaluate the effects of CSE on DICT-induced cell death. To elucidate the mechanism underlying it, AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma co-activator l-alpha (PGC1-α), nuclear respiratory factor 1 (NRF1), NRF2, superoxide dismutase (SOD1), and SOD2 expression was detected using western blot analysis. The oxygen consumption rate (OCR), cellular ROS, and mitochondrial membrane potential were measured. Finally, we confirmed the cardioprotective effect of CSE against DICT in both C57BL/6 mice and human induced pluripotent stem cell-derived cardiomyocytes (hiPSCCMs) by observing various parameters, such as electrophysiological changes, cardiac fibrosis, and cardiac cell death. RESULTS: Chlorogenic acid and nicotiflorin were the major compounds in CSE. Our data demonstrated that CSE blocked DOX-induced cell death of H9c2 cells without hindrance of its apoptotic effects on MDA-MB-231 cells. DOX-induced defects of OCR and mitochondrial membrane potential were recovered in a CSE through upregulation of the AMPK-PGC1-α-NRF1 signaling pathway. CSE accelerated NRF1 translocation to the nucleus, increased SOD activity, and consequently blocked apoptosis in H9c2 cells. In mice treated with 400 mg/kg CSE for 4 weeks, electrocardiogram data, creatine kinase and lactate dehydrogenase levels in the serum, and cardiac fibrosis, were improved. Moreover, various electrophysiological features indicative of cardiac function were significantly enhanced following the CSE treatment of hiPSCCMs. CONCLUSION: Our findings demonstrate CSE that ameliorates DICT by protecting mitochondrial dysfunction via the AMP- PGC1α-NRF1 axis, underscoring the therapeutic potential of CSE and its underlying molecular pathways, setting the stage for future investigations into its clinical applications.

2.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474216

RESUMO

Excessive lipid accumulation in adipocytes is a primary contributor to the development of metabolic disorders, including obesity. The consumption of bioactive compounds derived from natural sources has been recognized as being safe and effective in preventing and alleviating obesity. Therefore, we aimed to explore the antilipidemic effects of pennogenin 3-O-ß-chacotrioside (P3C), a steroid glycoside, on hypertrophied 3T3-L1 adipocytes. Oil Red O and Nile red staining demonstrated a P3C-induced reduction in lipid droplet accumulation. Additionally, the increased expression of adipogenic and lipogenic factors, including PPARγ and C/EBPα, during the differentiation process was significantly decreased by P3C treatment at both the protein and mRNA levels. Furthermore, P3C treatment upregulated the expression of fatty acid oxidation-related genes such as PGC1α and CPT1a. Moreover, mitochondrial respiration and ATP generation increased following P3C treatment, as determined using the Seahorse XF analyzer. P3C treatment also increased the protein expression of mitochondrial oxidative phosphorylation in hypertrophied adipocytes. Our findings suggest that P3C could serve as a natural lipid-lowering agent, reducing lipogenesis and enhancing mitochondrial oxidative capacity. Therefore, P3C may be a promising candidate as a therapeutic agent for obesity-related diseases.


Assuntos
Adipogenia , Metabolismo dos Lipídeos , Camundongos , Animais , Adipogenia/genética , Obesidade/metabolismo , Hipertrofia , Lipídeos/farmacologia , Estresse Oxidativo , Células 3T3-L1 , PPAR gama/metabolismo
3.
Front Nutr ; 11: 1346144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318472

RESUMO

Unlike general nutritional ranges that meet the nutritional needs essential for maintaining the life of an entire population, personalized nutrition is characterised by maintaining health through providing customized nutrition according to individuals' lifestyles or genetic characteristics. The development of technology and services for personalized nutrition is increasing, owing to the acquisition of knowledge about the differences in nutritional requirements according to the diversity of individuals and an increase in health interest. Regarding genetics, technology is being developed to distinguish the various characteristics of individuals and provide customized nutrition. Therefore, to understand the current state of personalized nutrition technology, understanding genomics is necessary to acquire information on nutrition research based on genomics. We reviewed patents related to personalized nutrition-targeting genomics and examined their mechanisms of action. Using the patent database, we searched 694 patents on nutritional genomics and extracted 561 highly relevant valid data points. Furthermore, an in-depth review was conducted by selecting core patents related to genome-based personalized nutrition technology. A marked increase was observed in personalized nutrition technologies using methods such as genetic scoring and disease-specific dietary recommendations.

4.
Biomol Ther (Seoul) ; 32(2): 214-223, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38298012

RESUMO

Metabolic abnormalities in the liver are closely associated with diverse metabolic diseases such as non-alcoholic fatty liver disease, type 2 diabetes, and obesity. The aim of this study was to evaluate the ameliorating effect of robinetin (RBN) on the significant pathogenic features of metabolic failure in the liver and to identify the underlying molecular mechanism. RBN significantly decreased triglyceride (TG) accumulation by downregulating lipogenesis-related transcription factors in AML-12 murine hepatocyte cell line. In addition, mice fed with Western diet (WD) containing 0.025% or 0.05% RBN showed reduced liver mass and lipid droplet size, as well as improved plasma insulin levels and homeostatic model assessment of insulin resistance (HOMA-IR) values. CD38 was identified as a target of RBN using the BioAssay database, and its expression was increased in OPA-treated AML-12 cells and liver tissues of WD-fed mice. Furthermore, RBN elicited these effects through its anti-histone acetyltransferase (HAT) activity. Computational simulation revealed that RBN can dock into the HAT domain pocket of p300, a histone acetyltransferase, which leads to the abrogation of its catalytic activity. Additionally, knock-down of p300 using siRNA reduced CD38 expression. The chromatin immunoprecipitation (ChIP) assay showed that p300 occupancy on the promoter region of CD38 was significantly decreased, and H3K9 acetylation levels were diminished in lipid-accumulated AML-12 cells treated with RBN. RBN improves the pathogenic features of metabolic failure by suppressing the p300-CD38 axis through its anti-HAT activity, which suggests that RBN can be used as a new phytoceutical candidate for preventing or improving this condition.

5.
J Microbiol Biotechnol ; 34(2): 425-435, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37997262

RESUMO

Schisandra chinensis extract (SCE) protects against hypocholesterolemia by inhibiting proprotein convertase subtilisin/kexin 9 (PCSK9) protein stabilization. We hypothesized that the hypocholesterolemic activity of SCE can be attributable to upregulation of the PCSK9 inhibition-associated low-density lipoprotein receptor (LDLR). Male mice were fed a low-fat diet or a Western diet (WD) containing SCE at 1% for 12 weeks. WD increased final body weight and blood LDL cholesterol levels as well as alanine transaminase and aspartate aminotransferase expression. However, SCE supplementation significantly attenuated the increase in blood markers caused by WD. SCE also attenuated WD-mediated increases in hepatic LDLR protein expression in the obese mice. In addition, SCE increased LDLR protein expression and attenuated cellular PCSK9 levels in HepG2 cells supplemented with delipidated serum (DLPS). Non-toxic concentrations of schisandrin A (SA), one of the active components of SCE, significantly increased LDLR expression and tended to decrease PCSK9 protein levels in DLPS-treated HepG2 cells. High levels of SA-mediated PCSK9 attenuation was not attributable to reduced PCSK9 gene expression, but was associated with free PCSK9 protein degradation in this cell model. Our findings show that PCSK9 secretion can be significantly reduced by SA treatment, contributing to reductions in free cholesterol levels.


Assuntos
Ciclo-Octanos , Fígado Gorduroso , Lignanas , Compostos Policíclicos , Schisandra , Masculino , Camundongos , Animais , Humanos , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Schisandra/metabolismo , Serina Endopeptidases/genética , Subtilisina , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Células Hep G2
6.
Hypertens Res ; 47(1): 215-224, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37452154

RESUMO

The relationship between declining nocturnal blood pressure (BP) and adverse cardiovascular outcomes is well-recognized. However, the relationship between diurnal BP profile and the risk of chronic kidney disease (CKD) progression is unclear. Herein, we examined the association between nocturnal systolic SBP (SBP) dipping and CKD progression in 1061 participants at the Cardiovascular and Metabolic Disease Etiology Research Center-High Risk (CMERC-HI). The main exposure was diurnal systolic BP (SBP) profile and diurnal SBP difference ([nighttime SBP-daytime SBP] × 100/daytime SBP). The primary outcome was CKD progression, defined as a composite of ≥ a 50% decline in the estimated glomerular filtration rate from baseline or the initiation of kidney replacement therapy. During 4749 person-years of follow-up (median, 4.8 years), the composite outcome occurred in 380 (35.8%) participants. Compared to dippers, the hazard ratios (HRs) for the risk of adverse kidney outcomes were 1.02 (95% confidence interval [CI], 0.64-1.62), 1.30 (95% CI, 1.02-1.66), and 1.40 (95% CI, 1.03-1.90) for extreme dipper, non-dipper, and reverse dipper, respectively. In a continuous modeling, a 10% increase in diurnal SBP difference was associated with a 1.21-fold (95% CI, 1.07-1.37) higher risk of CKD progression. Thus, decreased nocturnal SBP decline was associated with adverse kidney outcomes in patients with CKD. Particularly, patients with non-dipping and reverse dipping patterns were at higher risk for CKD progression than those with a dipping pattern.


Assuntos
Hipertensão , Insuficiência Renal Crônica , Humanos , Pressão Sanguínea/fisiologia , Fatores de Risco , Monitorização Ambulatorial da Pressão Arterial , Ritmo Circadiano/fisiologia , Insuficiência Renal Crônica/complicações , Progressão da Doença
7.
Genes (Basel) ; 14(12)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38137029

RESUMO

Diabetes is characterized by persistently high blood glucose levels and severe complications and affects millions of people worldwide. In this study, we explored the epigenetic landscape of diabetes using data from the Korean Genome and Epidemiology Study (KoGES), specifically the Ansung-Ansan (AS-AS) cohort. Using epigenome-wide association studies, we investigated DNA methylation patterns in patients with type 2 diabetes mellitus (T2DM) and those with normal glucose regulation. Differential methylation analysis revealed 106 differentially methylated probes (DMPs), with the 10 top DMPs prominently associated with TXNIP, PDK4, NBPF20, ARRDC4, UFM1, PFKFB2, C7orf50, and ABCG1, indicating significant changes in methylation. Correlation analysis highlighted the association between the leading DMPs (e.g., cg19693031 and cg26974062 for TXNIP and cg26823705 for NBPF20) and key glycemic markers (fasting plasma glucose and hemoglobin A1c), confirming their relevance in T2DM. Moreover, we identified 62 significantly differentially methylated regions (DMRs) spanning 61 genes. A DMR associated with PDE1C showed hypermethylation, whereas DMRs associated with DIP2C, FLJ90757, PRSS50, and TDRD9 showed hypomethylation. PDE1C and TDRD9 showed a strong positive correlation between the CpG sites included in each DMR, which have previously been implicated in T2DM-related processes. This study contributes to the understanding of epigenetic modifications in T2DM. These valuable insights can be utilized in identifying potential biomarkers and therapeutic targets for effective management and prevention of diabetes.


Assuntos
Metilação de DNA , Diabetes Mellitus Tipo 2 , Humanos , Metilação de DNA/genética , Epigenoma , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Estudo de Associação Genômica Ampla , Epigênese Genética/genética , República da Coreia/epidemiologia , Fosfofrutoquinase-2/genética
8.
Int J Mol Sci ; 24(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37958893

RESUMO

Doxorubicin (DOX), an effective chemotherapeutic drug, causes cardiotoxicity in a cumulative and dose-dependent manner. The aim of this study is to investigate the effects of hot-water extract of Capsella bursa-pastoris (CBW) on DOX-induced cardiotoxicity (DICT). We utilized H9c2 rat cardiomyocytes and MDA-MB-231 human breast cancer cells to evaluate the effects of CBW on DOX-induced cell death. Superoxide dismutase (SOD) levels, reactive oxygen species (ROS) production, and oxygen consumption rate were measured in H9c2 cells. C57BL/6 mice were treated with DOX and CBW to assess their impact on various cardiac parameters. Human-induced pluripotent stem-cell-derived cardiomyocytes were also used to investigate DOX-induced electrophysiological changes and the potential ameliorative effects of CBW. UPLC-TQ/MS analysis identified seven flavonoids in CBW, with luteolin-7-O-glucoside and isoorientin as the major compounds. CBW inhibited DOX-induced death of H9c2 rat cardiomyocytes but did not affect DOX-induced death of MDA-MB-231 human breast cancer cells. CBW increased SOD levels in a dose-dependent manner, reducing ROS production and increasing the oxygen consumption rate in H9c2 cells. The heart rate, RR interval, QT, and ST prolongation remarkably recovered in C57BL/6 mice treated with the combination of DOX and CBW compared to those in mice treated with DOX alone. Administration of CBW with DOX effectively alleviated collagen accumulation, cell death in mouse heart tissues, and reduced the levels of creatinine kinase (CK) and lactate dehydrogenase (LDH) in serum. Furthermore, DOX-induced pathological electrophysiological features in human-induced pluripotent stem-cell-derived cardiomyocytes were ameliorated by CBW. CBW may prevent DICT by stabilizing SOD and scavenging ROS. The presence of flavonoids, particularly luteolin-7-O-glucoside and isoorientin, in CBW may contribute to its protective effects. These results suggest the potential of CBW as a traditional therapeutic option to mitigate DOX-induced cardiotoxicity.


Assuntos
Neoplasias da Mama , Capsella , Ratos , Camundongos , Animais , Humanos , Feminino , Antioxidantes/metabolismo , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Capsella/metabolismo , Estresse Oxidativo , Camundongos Endogâmicos C57BL , Doxorrubicina/toxicidade , Doxorrubicina/metabolismo , Miócitos Cardíacos/metabolismo , Flavonoides/farmacologia , Superóxido Dismutase/metabolismo , Neoplasias da Mama/metabolismo , Apoptose
9.
J Invest Dermatol ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37952608

RESUMO

Xerosis is a common sign of both type 1 and type 2 diabetes mellitus (DM), and patients with DM and mouse models for DM show a compromised epidermal permeability barrier. Barrier defects then allow the entry of foreign substances into the skin, triggering inflammation, infection, and worsening skin symptoms. Characterizing how barrier abnormalities develop in DM could suggest treatments for xerosis and other skin disease traits. Because the proper ratio, as well as proper bulk amounts, of heterogeneous ceramide species are keys to forming a competent barrier, we investigated how ceramide metabolism is affected in type 1 DM using a mouse model (induced by streptozotocin). Chronic inflammation, evident in the skin of mice with DM, leads to (i) decreased de novo ceramide production through serine racemase activation-mediated attenuation of serine palmitoyl transferase activity by D-serine; (ii) changes in ceramide synthase activities and expression that modify the ratio of ceramide molecular species; and (iii) increased ceramide-1-phosphate, a proinflammatory lipid mediator, that stimulates inflammatory cytokine expression (TNFα and IFN-γ). Together, chronic inflammation affects ceramide metabolism, which attenuates epidermal permeability barrier formation, and ceramide-1-phosphate could amplify this inflammation. Alleviation of chronic inflammation is a credible approach for normalizing barrier function and ameliorating diverse skin abnormalities in DM.

10.
J Am Med Inform Assoc ; 31(1): 130-138, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37847669

RESUMO

OBJECTIVE: The potential of using retinal images as a biomarker of cardiovascular disease (CVD) risk has gained significant attention, but regulatory approval of such artificial intelligence (AI) algorithms is lacking. In this regulated pivotal trial, we validated the efficacy of Reti-CVD, an AI-Software as a Medical Device (AI-SaMD), that utilizes retinal images to stratify CVD risk. MATERIALS AND METHODS: In this retrospective study, we used data from the Cardiovascular and Metabolic Diseases Etiology Research Center-High Risk (CMERC-HI) Cohort. Cox proportional hazard model was used to estimate hazard ratio (HR) trend across the 3-tier CVD risk groups (low-, moderate-, and high-risk) according to Reti-CVD in prediction of CVD events. The cardiac computed tomography-measured coronary artery calcium (CAC), carotid intima-media thickness (CIMT), and brachial-ankle pulse wave velocity (baPWV) were compared to Reti-CVD. RESULTS: A total of 1106 participants were included, with 33 (3.0%) participants experiencing CVD events over 5 years; the Reti-CVD-defined risk groups (low, moderate, and high) were significantly associated with increased CVD risk (HR trend, 2.02; 95% CI, 1.26-3.24). When all variables of Reti-CVD, CAC, CIMT, baPWV, and other traditional risk factors were incorporated into one Cox model, the Reti-CVD risk groups were only significantly associated with increased CVD risk (HR = 2.40 [0.82-7.03] in moderate risk and HR = 3.56 [1.34-9.51] in high risk using low-risk as a reference). DISCUSSION: This regulated pivotal study validated an AI-SaMD, retinal image-based, personalized CVD risk scoring system (Reti-CVD). CONCLUSION: These results led the Korean regulatory body to authorize Reti-CVD.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Aprendizado Profundo , Humanos , Espessura Intima-Media Carotídea , Índice Tornozelo-Braço/efeitos adversos , Estudos Retrospectivos , Inteligência Artificial , Análise de Onda de Pulso/efeitos adversos , Fatores de Risco , Biomarcadores , Doença da Artéria Coronariana/complicações
11.
Food Sci Nutr ; 11(8): 4409-4418, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37576046

RESUMO

Onions are rich in bioactive compounds and have been found to prevent various chronic diseases, including obesity. We performed a systematic review and meta-analysis to investigate the antiobesity effect of onions. Studies were identified in PubMed/MEDLINE, Embase, Web of Science, and CENTRAL focusing on clinical trials evaluating the antiobesity effects of onion in obese subjects. The risk of bias in the studies was evaluated using Cochrane's Risk of Bias tool. The effect of onions was analyzed using data from the selected studies, and the results were indicated by weighted mean difference with 95% CI. The I 2 static test was used to examine heterogeneity between the studies. A total of 38 studies were reviewed, of which five clinical trials meeting the criteria were selected. As investigational products, onion peels were used in four studies and onions were used in one study. Following systematic review, it was determined that the risk of bias was generally low, and body weight, BMI, waist circumference, and triglyceride levels were significantly reduced in the onion groups compared to the placebo. In conclusion, onion intake had an antiobesity effect by reducing body weight and body fat, and this effect was particularly pronounced with onion peel.

12.
J Med Food ; 26(9): 605-615, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37590001

RESUMO

Cancer, caused by abnormal and excessive cellular proliferation, can invade and destroy surrounding tissues and organs through the spreading of cancer cells. A general strategy for developing anticancer agents is to identify biomarkers that, if targeted, can produce a robust cytotoxic effect with minimal side effects. Cell-cycle regulators, checkpoint regulatory genes, and apoptosis-related genes are well-known biomarkers that inhibit cancer cell proliferation. Several compounds that target such biomarkers have been patented and more are being developed as novel therapies. Recent additions to this list include anticancer drugs that target signaling pathway proteins, such as 5' adenosine monophosphate-activated protein kinase (AMPK), which plays a vital role in cancer and normal cell metabolism. Herein, we have reviewed recent patents related to AMPK-targeting anticancer drugs and discussed the mechanisms of action of these drugs. We conclude that these recently published patents include several attractive compounds and methods for targeting AMPK. Further research and clinical trials are required to elucidate the comprehensive role of AMPK in cancer cell metabolism, identify its associated signal transduction systems, and develop novel activators that may find applications in cancer therapy. Clinical Trial Registration number: NCT01904123.


Assuntos
Proteínas Quinases Ativadas por AMP , Antineoplásicos , Proteínas Quinases Ativadas por AMP/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Proliferação de Células , Transdução de Sinais
13.
Mol Nutr Food Res ; 67(16): e2200900, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37366293

RESUMO

SCOPE: Animal protein intake among Koreans has recently increased. However, there is limited evidence on the association of meat and fish/seafood intake and mortality. METHODS AND RESULTS: This study uses three representative prospective cohorts in Korea and 134,586 eligible participants are selected. Food intake is assessed using a food frequency questionnaire. Outcomes are classified as death from cardiovascular disease (CVD), cancer, and all-causes. Red meat intake shows a marginally negative association with all-cause mortality in the median intake group and a positive association in the highest intake group. Processed meat intake in the highest quintile group is positively associated with all-cause mortality compared to that of the lowest quintile group. Fish intake in the highest quintile group is negatively associated with CVD mortality in men, and all-cause mortality in women, compared to those in the lowest quintile group, while processed fish intake has unfavorable effects on mortality. In addition, substitution of one serving per week of red and processed meat, and processed fish with fish is negatively associated with all-cause and CVD mortality. CONCLUSION: Reduction of red and processed meat, and processed fish consumption or replacement of these foods with fish may be beneficial for longevity in Korean adults.


Assuntos
Doenças Cardiovasculares , Dieta , Animais , Feminino , Estudos Prospectivos , Causas de Morte , Fatores de Risco , Carne , Alimentos Marinhos , República da Coreia
14.
Skin Pharmacol Physiol ; 36(3): 149-159, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36927667

RESUMO

INTRODUCTION: The outermost layer of the skin, the epidermis, is directly exposed to external stress (e.g., irradiation, allergens, and chemicals). Changes in epidermal conditions/environment in response to this stress could also influence conditions of the dermis, located directly beneath the epidermis. Yet, whether/how any epidermal environment changes in response to external stress affect dermal functions has not been completely clarified. METHODS: We employed ultraviolet irradiation B (UVB) (which hardly reaches the dermis) as a model of external stress. Human keratinocytes and human dermal fibroblasts were treated with UVB and conditioned medium of keratinocytes exposed to UVB (UVB-keratinocyte-M), respectively. We assessed (1) inflammatory cytokines and lipid mediators in keratinocytes; (2) matrix metalloprotease (MMP) levels and collagen degradation in fibroblasts; (3) ex vivo organ-cultured human skin was treated with UVB. MMP levels and collagen degradation were examined; (4) test whether the mixture of agent (agent cocktail) consisting of dihydroceramide, niacin amide, resveratrol, glucosyl hesperidin, and phytosterol ester that has been shown to improve skin barrier integrity can mitigate influence of UVB in skin; and (5) a pilot one-arm human clinical test to assess efficacy of formulation containing agent cocktail on stratum corneum hydration, skin elasticity, and wrinkle index. RESULTS: Inflammatory-cytokine and -lipid mediator production were increased in cultured keratinocytes treated with UVB, while matrix MMP-1, -3, and -9 production and collagen degradation were increased in fibroblasts incubated with UVB-keratinocyte-M. mRNA expression of COL1A1 (that codes type 1 collagen) levels was decreased in fibroblasts incubated with UVB-keratinocyte-M. The study using ex vivo organ-cultured human skin showed both MMP-1 and MMP-9 expression were increased in both epidermis and dermis and increased dermal collagen degradation following UVB irradiation. Increased MMP production and collagen degradation were attenuated by application of an agent cocktail. Finally, a pilot clinical study demonstrated that the formulation containing our agent cocktail likely has the ability to improve skin hydration, increase skin elasticity, and reduce the appearance of wrinkles. CONCLUSION: Epidermal changes in epidermal environment and conditions in response to external stress affect dermal conditions, and these negative effects of external stress on various skin layers can be pharmacologically mitigated.


Assuntos
Metaloproteinase 1 da Matriz , Envelhecimento da Pele , Humanos , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Derme/metabolismo , Epiderme/metabolismo , Colágeno Tipo I , Citocinas/metabolismo , Lipídeos , Raios Ultravioleta , Fibroblastos
15.
Nutr Res Pract ; 17(1): 13-31, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36777807

RESUMO

BACKGROUND/OBJECTIVES: Epigenetic regulation by nutrients can influence the development of specific diseases. This study sought to examine the effect of individual nutrients and nutrient families in the context of preventing chronic metabolic diseases via epigenetic regulation. The inhibition of lipid accumulation and inflammation by nutrients including proteins, lipids, vitamins, and minerals were observed, and histone acetylation by histone acetyltransferase (HAT) was measured. Correlative analyses were also performed. MATERIALS/METHODS: Nutrients were selected according to information from the Korean Ministry of Food and Drug Safety. Selected nutrient functionalities, including the attenuation of fatty acid-induced lipid accumulation and lipopolysaccharide-mediated acute inflammation were evaluated in mouse macrophage Raw264.7 and mouse hepatocyte AML-12 cells. Effects of the selected nutrients on in vitro HAT inhibition were also evaluated. RESULTS: Nitric oxide (NO) production correlated with HAT activity, which was regulated by the amino acids group, suggesting that amino acids potentially contribute to the attenuation of NO production via the inhibition of HAT activity. Unsaturated fatty acids tended to attenuate inflammation by inhibiting NO production, which may be attributable to the inhibition of in vitro HAT activity. In contrast to water-soluble vitamins, the lipid-soluble vitamins significantly decreased NO production. Water- and lipid-soluble vitamins both exhibited significant inhibitory activities against HAT. In addition, calcium and manganese significantly inhibited lipid accumulation, NO production, and HAT activity. CONCLUSIONS: Several candidate nutrients and their family members may have roles in the prevention of diseases, including hepatic steatosis and inflammation-related diseases (i.e., nonalcoholic steatohepatitis) via epigenetic regulation. Further studies are warranted to determine which specific amino acids, unsaturated fatty acids and lipid-soluble vitamins or specific minerals influence the development of steatosis and inflammatory-related diseases.

16.
Exp Mol Med ; 55(1): 143-157, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36609599

RESUMO

Dynamic alteration of DNA methylation leads to various human diseases, including nonalcoholic fatty liver disease (NAFLD). Although C-Maf-inducing protein (Cmip) has been reported to be associated with NAFLD, its exact underlying mechanism remains unclear. Here, we aimed to elucidate this mechanism in NAFLD in vitro and in vivo. We first identified alterations in the methylation status of the Cmip intron 1 region in mouse liver tissues with high-fat high-sucrose diet-induced NAFLD. Knockdown of DNA methyltransferase (Dnmt) 1 significantly increased Cmip expression. Chromatin immunoprecipitation assays of AML12 cells treated with oleic and palmitic acid (OPA) revealed that Dnmt1 was dissociated and that methylation of H3K27me3 was significantly decreased in the Cmip intron 1 region. Conversely, the knockdown of Tet methylcytosine dioxygenase 2 (Tet2) decreased Cmip expression. Following OPA treatment, the CCCTC-binding factor (Ctcf) was recruited, and H3K4me3 was significantly hypermethylated. Intravenous Cmip siRNA injection ameliorated NAFLD pathogenic features in ob/ob mice. Additionally, Pparγ and Cd36 expression levels were dramatically decreased in the livers of ob/ob mice administered siCmip, and RNA sequencing revealed that Gbp2 was involved. Gbp2 knockdown also induced a decrease in Pparγ and Cd36 expression, resulting in the abrogation of fatty acid uptake into cells. Our data demonstrate that Cmip and Gbp2 expression levels are enhanced in human liver tissues bearing NAFLD features. We also show that Dnmt1-Trt2/Ctcf-mediated reversible modulation of Cmip methylation regulates the Gbp2-Pparγ-Cd36 signaling pathway, indicating the potential of Cmip as a novel therapeutic target for NAFLD.


Assuntos
Dioxigenases , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígenos CD36/genética , Antígenos CD36/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR gama/genética , PPAR gama/metabolismo
17.
Biochem Biophys Res Commun ; 617(Pt 1): 48-54, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35679710

RESUMO

We previously demonstrated that kaempferol, a flavonoid present in various herbs, inhibits adipogenesis by repressing peroxisome proliferator-activated receptor γ (PPARγ) activity. Here, we focused on elucidation of the underlying mechanism using genome-wide tools. First, RNA sequencing (RNA-seq) analysis showed downregulation of genes involved in adipogenesis in response to kaempferol. Subsequent ChIP assays revealed that kaempferol regulates the expression of adipogenic (Adipoq, Fabp4, Lpl) genes by modulating enrichment of active H3K4me3 and repressive H3K27me3 histone codes on target promoters. Second, we performed ChIP sequencing analysis of active H3K4me3, and co-analysis with RNA-seq identified PPARγ responsive sites in genes downregulated by kaempferol, in terms of expression and H3K4me3 deposition. Third, direct kaempferol binding to PPARγ, for which the KD value was 44.54 µM, was determined by microscale thermophoresis. Further RT-qPCR and GST pull-down assays demonstrated that kaempferol antagonizes rosiglitazone-induced PPARγ activation and impairs the rosiglitazone-dependent interaction between PPARγ and its coactivator CBP. Overall, our data suggest that kaempferol, as a PPARγ antagonist, mediates epigenetic repression of lipid accumulation by regulating histone methylation, and could serve as a candidate epigenetic drug to treat obesity-related diseases.


Assuntos
Adipogenia , PPAR gama , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Histonas/metabolismo , Quempferóis/farmacologia , Metilação , Camundongos , PPAR gama/genética , PPAR gama/metabolismo , Rosiglitazona
18.
Nutr Res Pract ; 16(Suppl 1): S37-S46, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35651841

RESUMO

The Korea National Health and Nutrition Examination Survey of 2013 to 2017 reported that the average protein consumption of the Korean population is above the current recommended nutrient intake of protein proposed by the Dietary Reference Intakes for Koreans. Some health professionals and the media often advise consuming diets high in protein for promoting metabolic regulation, weight control, and muscle synthesis. However, due to lack of scientific evidence, the validity and safety of high protein consumption are yet to be fully ascertained. The present review assesses recent evidence published in 2014-2020 from human studies, focusing on adequate protein intake and protein sources for the prevention of chronic diseases, particularly metabolic disorders and sarcopenia.

19.
J Ginseng Res ; 46(2): 188-205, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35509826

RESUMO

Panax ginseng is a medicinal plant is a material with various pharmacological activities and research suggests that it is particularly effective in representative metabolic diseases such as hyperglycemia, hypertension, and hyperlipidemia. Therefore, in this study, systematic review and meta-analysis were performed to investigate the comprehensive effect of P. ginseng on metabolic parameters representing these metabolic diseases. A total of 23 papers were collected for inclusion in the study, from which 27 datasets were collected. The investigational products included P. ginseng and Korean Red ginseng. Across the included studies, the dose ranged from 200 mg to 8 g and the supplementation period lasted from four to 24 weeks. The study subjects varied from healthy adults to those with diabetes, hypertension, obesity, and/or hyperlipidemia. As a result of the analysis, the levels of glucose and insulin area under the curves, % body fat, systolic and diastolic blood pressures, total cholesterol, triglycerides, and low-density lipoprotein cholesterol were significantly reduced in the P. ginseng group as compared with in the placebo group. In conclusion, P. ginseng supplementation may act as an adjuvant to prevent the development of metabolic diseases by improving markers related to blood glucose, blood pressure, and blood lipids.

20.
Int J Mol Sci ; 23(9)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35563444

RESUMO

Post-translational modification (PTM) is an essential mechanism for enhancing the functional diversity of proteins and adjusting their signaling networks. The reversible conjugation of ubiquitin (Ub) and ubiquitin-like proteins (Ubls) to cellular proteins is among the most prevalent PTM, which modulates various cellular and physiological processes by altering the activity, stability, localization, trafficking, or interaction networks of its target molecules. The Ub/Ubl modification is tightly regulated as a multi-step enzymatic process by enzymes specific to this family. There is growing evidence that the dysregulation of Ub/Ubl modifications is associated with various diseases, providing new targets for drug development. In this review, we summarize the recent progress in understanding the roles and therapeutic targets of the Ub and Ubl systems in the onset and progression of human diseases, including cancer, neurodegenerative disorders, and heart diseases.


Assuntos
Cardiopatias , Neoplasias , Doenças Neurodegenerativas , Ubiquitina , Ubiquitinas , Cardiopatias/metabolismo , Humanos , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Ubiquitina/metabolismo , Ubiquitinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...